Validação Semiautomática de Modelos Digitais

do Terreno

 João Fernandes Asp Of RC, Lic. Geografia joao.c.p.fernandes@hotmail.com
Manuel Jacinto Amador Picaró SAj SGE picaro.mja@mail.exercito.pt
Inácio Silva Camacho 2Sarg Art Inaciocamacho2@hotmail.com

> Pretende-se com a elaboração deste artigo, transmitir de uma forma sistemática o trabalho efetuado no âmbito do processo de validação de Modelos Digitais do Terreno, no Curso de Cartografia Digital do IGeoE (Instituto Geográfico do Exército).

> Será descrito de uma forma abreviada, o modo como foi realizada a componente prática deste processo, realçando as múltiplas dificuldades encontradas ao longo do desenvolvimento do projeto, assim como as possíveis soluções para ultrapassar as mesmas, fundamentando estas.

Enquadramento

O desafio colocado pelo chefe da SEPE (Secção e Edição de Pequenas Escalas), foi o desenvolvimento de um sistema que permitisse a validação dos MDT's (Modelos Digitais do Terreno).

As principais dificuldades que surgiram no início deste processo foram a escolha dos parâmetros necessários, objetivo de cada um, forma como seriam util izados, cruzamento de dados, morosidade do processo, complexidade do mesmo, quem executa a validação e de que forma.

A real ização deste trabalho resultou de uma necessidade de aperfeiçoamento no trabalho de MDT's, acrescentando desta forma uma ferramenta de trabalho que eventualmente poderá vir a ser integrada na cadeia de produção.

O projeto orientado pela SEPE com a colaboração da SSIG (Secção de Sistemas de Informação Geográfica), tornou-se numa mais-val ia para o aperfeiçoamento dos MDT's que são disponibil izados pelo IGeoE.

O objet ivo proposto para este projeto consiste na elaboração de uma metodologia com parâmetros que possibil item a val idação de MDT's.

Desenvolvimento de uma aplicação capaz de executar a metodologia previamente definida.

Dados

Para o processo de validação de MDT's foi extraído pela secção de Fotogrametria uma amostra representativa de pontos cotados da folha em trabalho, que servem como pontos de verificação, de modo a obterse a informação necessária para análise. Posteriormente esta informação é preparada para servir de input no modelo de validação (Tabela 1), contudo é de ressalvar, que os pontos adquiridos são diferentes dos utilizados para a elaboração do MDT.

Nº Ponto	*	14	72
20120			2014 IN
家政策表	2.84764		$\{0,1\}/2^{-1}$
2126	223,742		
2010	10,4040	610250	542.2753
3778 (C	B. Backt	80086.D	Mr. Res Street
2091	101.02	100727	LENE RA
211-22		CIONES	Hart March

Tabela 1- Pontos de Verificação Fonte: Elaboração própria

Os dados utilizados para a produção de MDT's, são extraídos a partir da restituição da folha 1:25000 do IGeoE, destas entidades geográficas utilizamos a hidrografia e toda a altimetria disponível da área (Tabela 2). Após a produção do Modelo, este serve como input no processo de validação juntamente com a tabela de pontos de verificação anteriormente referida.

Entidades Geográficas	Tema	Formato	Geometria	Тіро	Série Cartográfica
Curvas de Nivel	Altimetria	Vetor	Linha	Shapefile	M888
Pontos de Cota	Altimetria	Vetor	Ponto	Shapefile	M888
Vértices Geodésicos	Altimetria	Vetor	Ponto	Shapefile	M888
Linha de Água de 1ª Ordem	Hidrografia	Vetor	Linha	Feature Class	M888
Linha de Água de 2ª Ordem	Hidrografia	Vetor	Linha	Feature Class	M888
Linha de Água de 3ª Ordem (25mil)	Hidrografia	Vetor	Linha	Feature Class	M888
Linha de Água de 3ª Ordem (50mil)	Hidrografia	Vetor	Linha	Feature Class	M888
Linha de Água Auxiliar	Hidrografia	Vetor	Linha	Feature Class	M888
Ilha	Hidrografia	Vetor	Área	Feature Class	M888
Linha de Costa	Hidrografia	Vetor	Linha	Feature Class	M888

Tabela 2- Informação utilizada para a elaboração de MDT's Fonte: Elaboração própria

Metodologia

Para otimizar o processo de validação de MDT's, com o intuito de rentabilizar o tempo e facilitar a tarefa do operador, recorreu-se à tecnologia ESRI nomeadamente ao ArcCatalog, a partir do qual foi criada uma Toolbox, recorrendo-se de seguida ao Model-Builder para gerar um Modelo para processamento de dados geográficos. Posteriormente este Modelo foi exportado para um Script em Phyton (Figura 1), com o objetivo de introduzir alterações ou melhorias ao Modelo inicial, podendo deste modo através da programação em Phyton ot imizar algumas operações.

Para executar o Script pode ser util izado o Pyton IDLE (Python Integrated Development Environment) (Figura 2), ou o ArcCatalog, após este ser importado ara dentro da Toolbox anteriormente referida.

Figura 1- Toolbox com ModelBuilder e Script em Phyton Fonte: Elaboração própria

Figura 2- Interface gráfico do Pyton IDLE Fonte: Elaboração própria

Neste modelo (Figura 3), são util izados como inputs um MDT em formato Tiff (Tagged Image File Format) e uma tabela de pontos cotados em formato xlsx, nomeadamente pontos de verificação, previamente adquiridos pela Secção de Fotogrametria.

Figura 3- Modelo de validação de MDT's Fonte: Elaboração própria

Os pontos de verificação encontram-se numa tabela em formato xlsx, nesta medida, começamos por util izar a ferramenta Make XY Event Layer com o intuito de fazer uma espacial ização geográfica da informação, seguidamente util izamos a ferramenta Copy Features para obter um output dessa informação.

 Figura 4- Tarefas executadas param validação de MDT's Fonte: Elaboração própria

Recorreu-se à ferramenta Extract Value to Points com a final idade de extrair o valor do pixel do MDT para a mesma posição que o ponto cotado, deste modo, será possível determinar a diferença em Z entre os dois. Com a ferramenta Add Field foi adicionada uma nova coluna à tabela designada por "Diferença" de modo a conter os resultados provenientes da operação feita pela ferramenta Calculate Field que serviu para calcular a diferença entre o valor do ponto de verificação e do valor do pixel do MDT.

Figura 5- Tarefas executadas param validação de MDT's Fonte: Elaboração própria

De modo a obter outras informações relativamente ao campo Diferença, tais como o valor Mínimo, valor Máximo, Média e Desvio Padrão, foi util izada a ferramenta Add Field e Calculate Field para criar outra coluna com o nome V_Pos (valores positivos) que terá valores iguais a coluna Diferença, com a exceção de que todos os valores negativos passarão a positivos por forma a determinar as informações atrás referidas. Os valores da coluna Diferença foram copiados para a coluna V_Pos recorrendo-se, deste modo, ao Calculate Field. De seguida foram util izadas as ferramentas Make Feature Layer e Select Layer By Attribute para fazer a seleção de todos os valores negativos, tendo sido estes, multiplicados por -1 utilizando a ferramenta Calculate Field, por forma a ficarem todos os valores positivos.

 Figura 6- Tarefas executadas param validação de MDT's Fonte: Elaboração própria

A ferramenta Select Layer By Attributes foi posteriormente util izada para retirar a seleção anteriormente criada. Depois de termos os dados em condições para serem util izados, util izamos a ferramenta Summary Statistics para calcular e criar uma tabela que irá conter a informação anteriormente referida, nomeadamente o valor Mínimo, valor Máximo, Média e Desvio Padrão, para posterior anál ise.

Figura 7- Tarefas executadas param validação de MDT's **Fonte:** Elaboração própria

Como outputs deste processo serão obtidos uma Shapefile e uma tabela em formato dbf, contendo a Shapefile a diferença de Z do MDT Rastervalu e dos pontos de verificação, enquanto a tabela possuí o valor

mínimo, valor máximo, média e desvio padrão, relativamente ao campo V_Pos criado. Para final izar o processo foram util izadas as ferramentas Delete e Delete Field para apagar os dados intermédios usados no decorrer do Modelo, com a final idade de ficar exclusivamente a informação necessária para anál ise do MDT.

X	Y	Z	RASTERVALU	Diferenca	
265179.5687	489294.9831	399.2594	400.63473511	-1.37533511	
264323.5718	488960.4427	437.5394	435.15261841	2.38678159	
265305.0592	489025.1985	393.5394	393.74649048	-0.20709048	
264939.2427	489442.7347	404.0334	405.22799683	-1.19459683	
264265.6419	489678.0718	333.5894	335.56893921	-1.97953921	
264082.4628	489519.3219	325.1854	325.45025635	-0.26485635	
265002.2819	489956.3304	401.3494	399.57373047	1.77566953	

Figura 8 - Tabela de atributos da Shapfile Fonte: Elaboração própria

MIN_V_POS	MAX_V_POS	MEAN_V_POS	STD_V_POS	
0.00354814000002	6.70658003	1.57632953278107	1.27404002401677	

Figura 9 - Tabela dbf do sumário estatístico Fonte: Elaboração própria

Considerações Finais

Depois de todo o processo se encontrar concluído, este torna-se numa boa ferramenta de anál ise de possíveis erros na elaboração de MDT's. Com este pretende-se garant ir, que independentemente do operador que gera o processo o método de obter a validação dos MDT's é sempre o mesmo, tornando-se homogéneo, gastando apenas 20% do tempo que demoraria a fazer em ambiente ArcMap, diminuindo a necessidade de recursos humanos, assim como, reduz as necessidades em termos logísticos, contribuindo deste modo para um trabalho mais preciso e menos oneroso. É de todo indispensável determinar através de método cient ifico o erro máximo admissível a nível nacional para um MDT com uma resolução de 5m (5x5=25m2), produzido com a informação geográfica da Série Cartográfica M888 do IGeoE sendo a escala 1 : 25 000, método esse que deverá considerar as especificidades técnicas da informação, a sua escala, devendo também considerar a própria dimensão do pixel do MDT, bem como, a heterogeneidade do território nacional para obter um valor único para todo território, de modo a que posteriormente seja possível fazer a val idação dos MDT's.

Oportunamente pretendemos introduzir no modelo criado novas funcional idades, de modo a que todos os erros superiores a um determinado valor previamente definido, sejam representados graficamente de forma automática, diminuindo assim o tempo despendido para identificar os outl iers.

Futuramente seria uma mais-valia a conversão do Script em Phyton num Add-In para posteriormente criar uma barra de ferramentas customizada em ambiente ArcCatalog e integra-lo nesta, melhorando substancialmente o interface gráfico e otimizando alguns processos.

Referências Bibliográficas

HALLEN, David (2011) - Getting to Know ArcGIS ModelBuilder, New York, Esri Press, 336p.

JENNINGS, Nathan (2011) - A Phyton Primer for ArcGIS, New York, Esri Press, 462p.